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Iterative solution of panel method discretizations for
potential flow problems. The modal multipolar

preconditioning

J. D’Elı́a*, M. Storti and S. Idelsohn

Grupo de Tecnologı́a Mecánica del INTEC, Güemes 3450, (3000) Santa Fe, Argentina

SUMMARY

The iterative solution of linear systems arising from panel method discretization of three-dimensional
(3D) exterior potential problems coming mainly from aero-hydrodynamic engineering problems, is
discussed. An original preconditioning based on an approximate eigenspace decomposition is proposed,
which corrects bad conditioning arising from a pair of surfaces that are very close to each other, which
is a very common situation in slender wings and other aerodynamic profiles. This preconditioning has
been tested with the standard Bi-conjugate gradient (Bi-CG) and conjugate gradient squared (CGS)
iterative methods. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: panel method; preconditioning; iterative solver; aerodynamics; potential flow; panel
clustering

1. INTRODUCTION

The panel method is a well-established numerical technique for the solution of potential flow
problems, especially in exterior aero- and hydrodynamics due to its ability to cope with
complex geometries and the lack of artificial infinite boundaries [1–4]. This work is based on
Morino’s formulation [5–8] with plane low-order panels for the potential field. A characteristic
of such formulation is that it gives a full non-symmetric matrix with relatively low condition
numbers. To be more specific, the condition number does not degrade under refinement as it
is common in the ‘in 6olume ’ discretization methods, like FDM, FEM, FVM or the relatively
young ‘meshless’ methods. This advantage is somewhat compensated by the fact that the
system matrix is full and a definitive assessment of the efficiency of the method, compared with
the ‘in volume’ ones is rather involved. However, a clear advantage of the method, mainly
from the practical point of view, is the lack of domain interior meshing, specially in 3D.
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J. D’ELÍA ET AL.2

Application of iterative solvers to panel/BEM (boundary element method) problems is
described in many papers [9–14]. A rough list of parameter-free iterative solvers for non-sym-
metric systems of linear equations is given by Natchigal et al. [17], where three basic types are
considered as follows. First, those methods based on the normal equations: CGN=CGNR
(Hestnes and Stiefel [22]), CGNE (Craig, 1955), LSQR (Paige and Saunders [23]). Second,
those ones based on orthogonalization: GCG (Concus and Golub, 1976, Widlund, 1978),
ORTHOMIN (Vinsome, 1976), ORTHORES and ORTHODIR (Young and Jea, 1990), FOM
(Saad, 1981), GCR (Elman, 1982, Eisenstat et al. [24]), GMRES (Saad and Schultz [25]).
Third, those ones based on biorthogonalization: BCG=BIOMIN (Lanczos [18], Fletcher [19]),
BIORES=BO (Lanczos, 1950, Jea and Young, 1983), BIODIR (Jea and Young, 1983),
CGS=BIOMIN2 (Sonneveld [20]), BIORES2 and BIODIR2 (Gutknecht [26]), Bi-CGSTAB
(van der Vorst [27]), QMR (Freund [28]). We also have the USYMLQ and USYMQR
methods (Saunders et al. [28]). This terminology approximately follows Nachtigal et al. and
Gutknecht [26] and other references can be found in [29–31]. Iterative solvers are based on
repetitive calculation of matrix–vector multiplication. As the matrices coming from panel
discretizations are full, it is not possible to store the matrix coefficients in core memory, as it
is usual in the ‘in volume’ methods, where the matrix is sparse. Then, the interaction
coefficients have to be recomputed at each matrix–vector operation and the overall cost is
roughly the number of matrix–vector operations times the cost of evaluating one of them.
Global efficiency is controlled thus by: (a) a choice of the iterative solver and preconditioning
in order to improve the convergence rate and reduce the number of matrix–vector operations,
and (b) an efficient computation of the interaction coefficients.

Some preconditioners are purely algebraic, as those based on incomplete factorization (see
[9] for instance), whereas others take into account the underlying physics. Most of the
physically based preconditionings for the panel method are based on some kind of multi-polar
expansion of the field produced by a ‘cluster ’ of panels [13–15]. The advantage of the algebraic
preconditionings are that they can be applied to a broader range of problems, whereas physical
based preconditionings yield better performances at the expense of being more specific.

Preconditioners in a general BEM context are extensively reviewed by Prasad et al. [10],
where some success has been reported with the conjugate gradient and GMRES when they are
used in conjunction with preconditioning approaches. Also, Hribersek et al. [11] have consid-
ered Jacobi, incomplete factorization and row–sum-type preconditioners for the BEM solution
of viscous flow problems, showing improved convergence rates with the first two ones. Yan
[21] obtained sparse preconditioners for dense system matrix in 2D BEM analysis through
condensation by discrete Fourier transforms, whereas Vavasis [15] treats the panel/BEM case,
which is rather near to the current case, i.e. solving the Laplace equation in a exterior 3D
domain, so a brief account of his approach will be given. Vavasis considers three basic
preconditioners: the mesh neighbor, the matrix entries and the hierarchical clustering, which
have the following idea in common. From the system matrix A, a small index list L is chosen,
drawn from {1, 2, . . . , Ni} such that the variables in L have the most influence on the variable
i. Next, a small system of equations A( Tp̄i= ēi is solved, where the overbars denote that all the
rows and the columns of A are deleted except for those in the index list L. Once this solution
is known, it expands back to entries of the preconditioner and this procedure is done for all
its rows. On one hand, in the mesh neighbor preconditioner, it is taken into account that the
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ITERATIVE SOLUTION FOR PANEL METHOD DISCRETIZATION 3

matrix coefficient relating the control points i and j comes up roughly from a term like
1/�xi−xj �. Therefore, the further apart two control points are, the less influence it would expect
a change at one control point to have on the other. It is said that two control points are
‘neighbors’ if they border a common panel side. Since neighboring control points are the most
interrelated, they are put in the mesh neighbor preconditioner. Also, it is noted that this
strategy leads to a sparse preconditioner, where its sparsivity pattern will mirror the mesh
connectivity. On the other hand, the mesh entries preconditioner constructs the index list L
with the following criterion: if aij, aji satisfy �aijaji �] t �aiiajj �, then the control point j is included
in the index list L, where t denotes some user-specified tolerance, or ‘magic number’. For
instance, when aii=1/2 and �aij �Baii, with t=1, 0, a diagonal and full populated precondi-
tioner are obtained respectively, whereas middle values of t do not offer any regular or
predictable sparsivity pattern. In an algebraic context, Jemmings [21] proposed to adopt
0.015 t50.10. As it can be noted, this type of preconditioner does not depend on any
panel/BEM formulation, hence it can be applied to an arbitrary system matrix. Finally, the
hierarchical clustering preconditioner classifies the control points according to how far away
they lie from the control point i. The first step in its construction is to make a hierarchy of
clusters, next to the center and radii r for each cluster C are obtained. Once the clusters,
centers and radii are computed, the hierarchy preconditioner is constructed with the aid of the
index list L obtained as the acceptable clusters of each control point. It is said that cluster C
is acceptable to the control point i when the distance from the control point i to the center of
C is at least tr, where t\1 is a user-specified number. Vavasis reports good improvements with
the first two types for rather thick 3D geometries on industrial applications. Further details
about these three types of preconditioners adapted for a dense and unsymmetric matrix system
can be found in the Vavasis’s work and the reference listed there.

However, for thin wings, the authors found that the performance of these kind of
preconditioners is rather restricted. On one hand, the mesh neighbor preconditioner assumes
that the importance of the influence matrix coefficient is only related with the mesh topology,
i.e. neighbor panels have a strong interaction and remote ones a weaker interaction. However,
this assumption is not always the case for dipolar matrices, which are proportional also to a
view factor, so that neighbor panels (in a topological sense) that are nearly coplanar have weak
interaction, which is actually the case of well-refined meshes on smooth surfaces. Moreover,
remote panels (again in a topology sense) on opposite sides of thin wing geometries and facing
each other, have a strong interaction. In other words, the mesh neighbor preconditioner
strategy conduces to rather lower performances in such cases. On the other hand, the matrix
entries preconditioner is a good alternative for thick geometries, with usually low rate in the
filling of the preconditioner (i.e. its non-zero entries). But, for thin wing configurations (similar
to the considered in the numerical examples) we had to use t\0.8, with filling ratios greater
than 80%. Finally, the hierarchical clustering preconditioner shares similar characteristics with
the mesh neighbor one.

For most iterative solvers, the convergence rate is closely related to the condition number of
the linear system, which highly depends on the geometry. To be more specific, high condition
numbers arise whenever two surfaces are close together, so that the distance between them is
smaller than the average size of the panels. Note that this implies that, in contrast with the ‘in
volume’ methods, the condition number is reduced after refinement, since, eventually the
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average size of the panels will get smaller than the distance between the surfaces. Now, suppose
for a moment that the profile is symmetric and with a small thickness e, and we are interested
in e�0. Any distribution of double layer density m given by m1,2 on each side of the wing can
be decomposed as the sum of a symmetric one m+and a skew-symmetric one m− where
m9=1/2(m19m2). Now, in the limit of vanishing thickness, the field produced by a skew-sym-
metric density on both sides of the wing are added and the result is a flat surface at the plane
of symmetry with a distribution of 2m−, whereas for the symmetric distribution, the fields tend
to cancel each other and the result is also a flat surface but with a null double layer density
distribution. This shows that the self-interaction coefficient for the skew-symmetric distribu-
tion behaves like O(1), whereas those for the symmetric one behaves like O(e) for e�0. This
explains why the condition number degrades as e�0 and suggests that a physically based
preconditioning, based on making the change of variables and scaling appropriately the
symmetric part, will correct this degradation. The authors call this the ‘modal preconditioning’
and is, in their opinion, the main contribution of this paper.

One may argue that if the preconditioning is efficient for profiles that are too thin, then it
would be better to handle those case specially, i.e. modeling them as plain flat surfaces. First,
it will be shown in the examples that interesting gains are obtained for profiles of 8% and even
25% relative thickness. Second, even if the airfoil is not too thin, the thickness is smaller near
the trailing edge and this is a cause of slower convergence. Third and last, using the
preconditioning allows the solving of arbitrarily thin airfoils without worrying about the
degree of the approximation of replacement by a zero thickness airfoil.

With respect to an efficient evaluation of the interaction coefficients, it is common practice
to use approximated expressions based on far-field expansions, valid when both panels are
separated by a distance that exceeds some threshold value scaled by the panel size. Typically,
the cost of the far-field expression is faster than the exact evaluation by a ratio of 1:8.
However, this introduces a consistency error, and in order to eliminate it, an outer loop is
iterated, where a residual with the exact coefficients is computed and a correction is added. It
is clear that if too many iterations of the outer loop (]8) are performed, then it is cheaper to
iterate directly on the exact coefficients, but it can be shown that this exterior problem is
well-conditioned and, typically, two iterations are needed to reduce the error by a factor of
10−7. This issue is discussed in depth elsewhere [16].

2. PANEL DISCRETIZATION OVERVIEW

Let G be a closed surface, and Vi(e) the corresponding interior (exterior) domain. The governing
equations for potential flow are the Laplace equation in Ve with slip condition on G, which in
terms of the perturbation potential can be written as:

Df=0, in Ve;

(f

(n
= −u� · n̂, at G, (1a,b)
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where u� is the undisturbed velocity and f is the perturbation potential defined by:

u=u�+9f, (2)

where u is the total velocity. This problem can be rewritten as a Fredholm integral equation
in terms of the single and double layer densities s and m as:

m(x)−
1

2p

&
G

m(x%)
(

(n
� 2

�x−x%�
�

dG%=
1

2p

&
G

s(x%)
1

�x−x%� dG%, (3)

for x belonging to the surface G, and n̂ is the normal pointing into Ve. For the slip or
inlet/outlet boundary condition as in (1b), it turns out to be that s is simply s= − n̂ ·u� and
then, the right-hand-side of (3) is known. Moreover, m is equal to the perturbation potential
f at the surface. The panel method is based on approximating G by a polyhedral surface,
composed of a certain number Npan of non-overlapping flat panels {Gi}i=1

Npan. Assuming that m

and s are constant over each panel and imposing (3) by collocation at the centroids of the
panels, a linear system of the form:

Am=Cs (4)

is obtained, where m= [m1m2 . . . ]T is the vector of panel potentials, s is the single layer
densities per panel, computed as:

si= −u� · n̂i, (5)

and n̂i is the normal to panel i. The interaction coefficients are computed from:

Cij=
&

Gj

1
�x−xi �

dG,

Aij=
&

Gj

(

(n
! 1

�x−xi �
"

dG,

(6)

where xi is the centroid of the i panel.

3. THE MODAL PRECONDITIONING

It will be shown that for thin airfoils, a symmetric/skew-symmetric decomposition reveals a
conditioning that grows inversely proportional to the thickness. Then, a preconditioning based
on this symmetric/skew-symmetric decomposition is proposed. It will be shown how the
preconditioning corrects the bad scaling for a simple geometry consisting of two facing panels,
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then for two pairs of panels on a symmetric airfoil, and two pairs of panels on a non-symmet-
ric airfoil. Finally, the expression for the preconditioning in the general case is shown.

4. A PAIR OF PANELS

Consider first two identical flat square panels of side H, parallel to each other as in Figure 1,
separated by a distance d=He. This should be regarded as a very crude idealization of a
slender airfoil, so that the normals are taken as shown in the figure. The matrix of interaction
coefficients is:

A=
� 1

2

−g(e)
−g(e)

1
2

n
, (7)

where the authors replaced A11=A22=
1
2, as is usual for the self-interaction coefficients, and by

symmetry A21=A12= −g(e), where g(z) is the potential produced by a unit distribution of
double layer potential at a distance z on an axis perpendicular to the panel and passing
through its centroid, z is taken as positive if the point is on the side with positive charge. The
qualitative behavior for g(z) is like that in Figure 2, it is antisymmetric with respect to z=0,
it has a jump of unit magnitude (i.e. equal to the double layer density) and continuous
derivative at z=0:

Figure 1. Crude realization of a thin airfoil with two panels.

Figure 2. Potential across the panel produced by constant double layer density.
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g �z=0+ = +1
2,

g �z=0− = −1
2,

dg
dz
)
z=0+

=
dg
dz
)
z=0−

= −q.
(8)

Then, for small e, you can put, to first-order:

A=
� 1

2

−1
2+qe

−1
2+qe

1
2

n
. (9)

As the problem is symmetric about the centerplane, it decouples in a symmetric/antisymmetric
basis. Let

S=
1


2

�1
1

1
−1

n
(10)

be the change of basis matrix, then the transformed matrix is a diagonal one:

A0 =S−1AS=
�qe

0
0

1−qe

n
(11a,b)

and the bad conditioning is clear, since for e�0, the first diagonal entry vanishes:

cond(A)=cond(A0 )=1−qe

qe
�

1
qe

for large e. (12)

Let us take a closer look at what matrix S represents. If we take its columns as double layer
density distributions, then the first column corresponds to m1,2=1, and the second one to
m1= −m2=1 (see Figure 3). Recall that a double layer density distribution can be thought of
as two single layer distributions of equal strength but opposite sign in the limit when the
distance between the single layer distributions tends to zero, keeping the product of the

Figure 3. Symmetric and skew-symmetric distributions of charge.
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distance and the strength of the single layer distributions constant. By convention, the
normal vector points from the negative charge side to the positive one for a positive double
layer distribution. Note that this distribution corresponds to a symmetric arrangement of
charge about the symmetry plane, whereas the second column, corresponds to a skew-sym-
metric one. The coefficients in matrix A0 are the interaction coefficient between these two
distributions. It is clear from symmetry arguments that the symmetric arrangement has a
null interaction with the skew-symmetric one, and this explains why the off-diagonal entries
in A0 are null. Now, regarding the diagonal entries, for e�0, the double layer distribution
of panel 1 tends to cancel that one of panel 2, so that the field vanishes to zero. The first
diagonal entry in A0 , see Equation (11b), represents the self-interaction coefficient of this
arrangement, and then vanishes for e�0. In contrast, in the skew-symmetric arrangement,
the field of each panel tends to reinforce that of the other, and in the limit, a single panel
with the original distribution that is twice as much is obtained. The second diagonal entry
corresponds to the self-interaction coefficient for this charge distribution and then it ap-
proaches a non-null value for e�0. As for this very simple (Npan=2) case S−1AS is
diagonal, then:

A=S diag(S−1AS)S−1, (13)

where diag(X) stands for a diagonal matrix with the same diagonal entries of X:

diag(X)=Ã
Ã

Ã

Æ

È

X11

0
�

0
X22

0
�

. . .
0

X33

�

. . .
0
�

. . .
Ã
Ã

Ã

Ç

É

. (14)

It is well-known that the best preconditioning Q is that one that most resembles A for a
given computational effort in inverting a linear system for the preconditioning matrix. In
this simple case, we can take Q=A, and from (13):

Q=S diag(S−1AS)S−1, (15)

and this preconditioning will give a preconditioned matrix that is the identity, and then is
optimal.

In Section 5, this preconditioning will be extended to the case with a large number of
panels and it will be shown that it has good preconditioning properties. Note that the
computational effort in solving a system for Q as in (13) is negligible, since the change of
basis is performed by Npan/2 sums and differences, and the inversion of the diagonal part
of the transformed matrix involves O(Npan) operations.
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5. SYMMETRIC AIRFOIL

Consider now the case of a symmetric airfoil discretized with a large number of panels. It is
easy to see that it suffices to consider the interaction coefficients between two pair of panels
as shown in Figure 4. As the airfoil is symmetric, panels 2 and 4 are obtained from panels 1
and 3 by reflection about the centerplane of the airfoil. For simplicity, it will be assumed also
that all the panels are parallel to the symmetry plane, and that panels 1 and 3 are identical
(and then 2 and 4), but these assumptions are not essential. The structure of the matrix is then:

A=Ã
Ã

Ã

Æ

È

1
2

−1
2+qe

0
−pe

−1
2+qe

1
2

−pe

0

0
−pe

1
2

−1
2+qe

−pe

0
−1

2+qe
1
2

Ã
Ã

Ã

Ç

É

. (16)

Of course, the 2×2 diagonal matrix blocks are the same as in the 2-panel example. Regarding
the off-diagonal terms, the in-plane coefficients like A13, A31, A24 and A42 are null, which can
be easily shown from (6), whereas the others, like A14, are O(e) and negative, say −pe. Now,
the change of basis matrix is written as:

S=
1


2
Ã
Ã

Ã

Æ

È

1
1
0
0

0
0
1
1

1
−1

0
0

0
0
1

−1

Ã
Ã

Ã

Ç

É

. (17)

Note that, again, the first two columns correspond to symmetric (with respect to the horizontal
plane of symmetry) distribution of potentials, whereas the last two correspond to skew-
symmetric ones. The transformed matrix is

Figure 4. Two pairs of panels on a symmetric airfoil.
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A0 =Ã
Ã

Ã

Æ

È

qe

−pe

0
0

−pe

qe

0
0

0
0

1−qe

pe

0
0

pe

1−qe

Ã
Ã

Ã

Ç

É

(18)

and it is verified that the off-diagonal 2×2 blocks are null. In addition, the first block
diagonal entry corresponding to interaction coefficients between the symmetric distributions
has terms O(e), whereas the second block diagonal entry corresponding to the skew-symmetric
mode is O(1). The condition number is again O(1/e) and can be corrected with the
preconditioning defined by (15). Effectively,

cond(AQ−1)=cond(AS diag(S−1AS)−1S−1)=cond(A0 diag(A0 )−1)

=Ã
Ã

Ã

Æ

È

1
−p/q

0
0

−p/q
1
0
0

0
0
1

pe/(1−qe)

0
0

pe/(1−qe)
1

Ã
Ã

Ã

Ç

É

=O(1) for e�0.

(19)

6. NON-SYMMETRIC AIRFOIL

In this case, the change of basis does not decouple the problem as cleanly as in the symmetric
case, but it can still be shown how the proposed preconditioner gives an O(1) condition
number, which is verified afterwards with numerical examples (see Figure 5). As before, only
two pairs of panels will be considered. For convenience, the following block decomposition of
A0 is made:

Figure 5. Two pairs of panels on a non-symmetric airfoil.
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A0 =�A0 + +

A0 − +

A0 + −

A0 − −

n
, (20)

where each of the submatrices are 2×2, and the order will be assessed with respect to e of
each of the elements in each of the blocks. This is done in Appendix A and the conclusions are:

A0 + + =eA0 *+ + +O(e2), (21)

A0 − + =e2A0 *− + +O(e3), (22)

A0 + − =A0 *+ − +O(e), (23)

A0 − − =A0 *− − +O(e), (24)

where A0 *. . , . .=O(1).

7. EFFICIENCY OF THE PRECONDITIONING

From (21)–(24), it can be written:

A0 ��eA*+ +

e2A0 *− +

A0 *+ −

A0 *− −

n
. (25)

It is clear from this expression that cond(A)�1/e (or worse). In contrast, if it is preconditioned
with (15):

AQ−1=A[S diag(S−1AS)S−1]−1=AS diag(S−1AS)−1S−1=SA0 diag(A0 )−1S−1

�S
�eA0 *+ +

e2A0 *− +

A0 *+ −

A0 *− −

n�e diag(A0 *+ +)
0

0
diag(A0 *− −)

n−1

S−1

�S
� A0 *+ + diag(A0 *+ +)−1

eA0 *− + diag(A0 *+ +)−1

A0 *+ − diag(A0 *− −)−1

A0 *− − diag(A0 *− −)−1

n
S−1

�S
�A0 *+ + diag(A0 *+ +)

0
A0 *+ − diag(A0 *− −)−1

A0 *− − diag(A0 *− −)−1

n
S−1, (26a–d)

and then

cond(AQ−1)=O(1) (27)

provided that the argument matrix in (26b) is non-singular. Again, the bad conditioning is
caused by the symmetric modes. Due to the tendency to cancel the field of the facing panel
when e�0, the field produced by these modes is O(e) and so are the interaction coefficients
(the first matrix column in (25)). The diagonal preconditioning (in the transformed basis)
successfully corrects this behavior.
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J. D’ELÍA ET AL.12

8. EXPLICIT EXPRESSION FOR REAL (Npan\2) MESHES

Now, the explicit expression for the change of basis matrix for the case where Npan\4 is given.
It is assumed that the panels are numbered so that panel 2n−1 and 2n are on opposite sides
of the airfoil and they collapse to each other for e�0. The change of basis matrix is formed
by putting first all the Npan/2 symmetric modes and after the skew-symmetric ones:

S=
1


2

��1
1
n
�I

� 1
−1

n
�I

n
, (28)

where I stands for the identity matrix of (Npan/2)× (Npan/2) and the Kronecker product � of
two matrices is defined by

A�B=Ã
Æ

È

B11A
B21A
�

B12A
B22A
�

B13A
B23A
�

. . .

. . .
· · ·

Ã
Ç

É
. (29)

With respect to the limits of applicability, the mesh on both surfaces have to be congruent, i.e.
for e�0, the nodes and elements have to coincide with each other and the relative shift has
to be normal to the surface. Small deviations or distortions are acceptable provided that they
are small with respect to the average element size (see Figure 6).

9. MULTIPOLAR PRECONDITIONING

This preconditioning somewhat follows the lines of the modal one previously presented, but it
is oriented towards a single surface instead. It also has some resemblance to multigrid
methods. It will be seen in the next section how to combine it with the modal preconditioning.
Consider, for instance, two pairs of panels as shown in Figure 7 and start with the same
change of basis as before Equation (17). Assume that both panels are coplanar and have the
same area. This is true or nearly true for highly structured meshes. It will be discussed later

Figure 6. Effect of small distortions in the efficiency of the preconditioned.
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Figure 7. Two pairs of panels on a surface.

how to extend the multipolar preconditioning for unstructured ones. The same block split as
in (20) is made and each block will be analyzed at a time. Consider an off-diagonal term in
A0 − − like

A0 34=
1
2(A31−A32−A41+A42). (30)

As before, A31−A32 is the potential produced by a double layer density distribution of
m= +1 on panel 1 and m= −1 on panel 2. Suppose now that panels 3 and 4 are far from
panels 1 and 2, i.e.

�x�= �x34−x12��h, (31)

where x34 is the centroid of the ‘panel cluster ’ composed of panels 3 and 4 and so on. Then,
one can approximate A31−A32 by a quadrupole expansion:

A31−A32:−3ah
xz
r5 =f12(x, y, z), (32)

where a is the area of the panels, the system xyz is chosen as in Figure 8, and r2=x2+y2+z2.
Now, let ŝ be a unit vector going from the centroid of panel 3 to that of panel 4. Then,

Figure 8. Local system at a panel cluster.
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A0 34= −1
2[f12(x34+

1
2h ŝ)+f12(x34−

1
2h ŝ)]:1

2h(ŝ ·9f12)=O(h2/r4). (33)

Note that this is O [(h/r)2], smaller than the typical interaction coefficient between two panels,
which has typically a decay rate of a dipole O(1/r2). In contrast, the diagonal elements are
O(1). In a similar way, it can be shown that the off-diagonal elements in A0 − + and A0 + − are
O(h/r3). The diagonal elements vanish by symmetry. Finally, the elements in A0 + + are
basically the same as if each pair of panels were added in a single larger panel, with two points
of collocation, i.e. it has the same structure of the original matrix A but it has a dimension that
is smaller by half. In brief,

A0 =�O(I)+O(1/r2)
O(h/r3)

O(h/r3)
O(I)+O(h2/r4)

n
, (34)

where O(I)+O(1/r2) means that the diagonal elements are O(1), whereas the other off-diago-
nal terms are O(1/r2). The preconditioning proposed is obtained retaining only the A0 + + block
and the diagonal part of A0 − −:

Q=S
�A0 + +

0
0

diag(A0 − −)
n

S−1. (35)

The computational effort in inverting this conditioning corresponds to inverting the A0 + +

block. As this has half the dimension of the full matrix, the core memory requirement is one
quarter smaller and the CPU time one eighth smaller than those for the full matrix, which is
a significant saving. However, panel applications are limited strongly by the matrix size, and
then as we are interested in preconditionings requiring smaller amounts of memory at the
expense of higher CPU times, this is achieved using larger clusters. Consider a cluster of four
panels (two such clusters are shown in Figure 9). The change of basis considered is now

Figure 9. Two clusters of four panels each.
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Æ

È
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1
1
1
0
0
0
0

0
0
0
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1
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1
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1
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0
0
0
0

1
1

−1
−1

0
0
0
0

1
−1
−1

1
0
0
0
0

0
0
0
0
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−1
1

−1

0
0
0
0
1
1

−1
−1

0
0
0
0
1

−1
−1

1

Ã
Ã

Ã

Ã

Ã

Ã

Ã

Ç

É

. (36)

Columns 1, 3–5 correspond to double layer distributions on cluster 1, whereas the others
correspond to cluster 2. Column 1 represents a constant distribution of double layer density,
so its far-field expansion is a dipole, whereas columns 3–5 have a null total sum of double
layer density and their far-field expansions are, therefore, at least of the order of a quadrupole,
see Figure 10. The same occurs respectively for columns 2, 6–8 for cluster 2. If the first two
columns are called the ‘+ modes ’ and the rest the ‘− modes ’, a block split in the transformed
matrix is induced. The matrices A0 + +, A0 − +, A0 + − and A0 − − have respectively, sizes of 2×2,
2×6, 6×2 and 6×6. The behavior with respect to h/r are as before or higher: for instance,
A0 58 corresponds to the interaction of an octupole on cluster 2 double differentiated at the
center of cluster 1. This is then O(h4/r6). The size of the A0 + + block in the preconditioning
given by (35) is now 2×2, one quarter the size of A.

In this way, by recursion, larger and larger clusters can be used and the dimension of the
matrix to be inverted is O(Npan/m), where m=2n is the number of panels in a cluster. Consider
a cluster of 2n panels, then the ‘in-cluster ’ change of basis matrix Scluster is defined recursively
as

Scluster(2n)=Scluster(2)�Scluster(2n−1),

Scluster(2)=
1


2

�1
1

1
−1

n
. (37)

Scluster is split in its first column, representing a constant distribution of double layer density
and all the rest representing higher-order distributions,

Scluster= [Scluster
+ Scluster

− ], (38)

Figure 10. Distribution of double layer densities on the four panel cluster.
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where

Scluster
+ =2− (n−1)[1 1 · · · 1]T (39)

and Scluster
− is a matrix of 2n× (2n−1) with the rest of the columns. The change of basis matrix

is then

Smp= [Scluster
+ �I Scluster

− �I], (40)

where I is an identity matrix of size Npan/2n. Finally, a few words on the implementation of the
change of basis for large clusters. As long as not so large clusters are used, the cost of a change
of basis is negligible. If very large clusters are used, and a ‘naı̈6e ’ implementation (i.e. as a
literal matrix–vector product) is used, the cost could affect performance. However, this kind
of change of basis can be seen as the ‘discrete Haar transform ’, which is well-known in the
theory of discrete signals. There are efficient implementations of this kind of transformation,
in the same spirit of the well known fast Fourier transform algorithm.

10. THE MODAL AND MULTIPOLAR PRECONDITIONINGS COMBINED

To combine both preconditionings for a thin airfoil, you first transform the matrix to the
modal symmetric/skew-symmetric basis, as explained in Sections 5 and 6. The change of basis
matrix is

Smod=
1


2
Ã
Ã

Ã

Ã

Ã

Ã

Ã

Æ

È

1
1
0
0
�

0
0
1
1
0
0
�

· · ·
· · ·

0
1
1
0
0
�

. . .

· · ·

· · ·
· · ·
· · ·
· · ·

1
−1

0
0
�

0
0
1

−1
0
0
�

· · ·
· · ·

0
1

−1
0
0
�

. . .

· · ·

· · ·
· · ·
· · ·
· · ·

Ã
Ã

Ã

Ã

Ã

Ã

Ã

Ç

É

. (41)

And the transformed matrix is

A0 mod=Smod
−1 ASmod=

�A0 mod
+ +

A0 mod
− +

A0 mod
+ −

A0 mod
− −

n
. (42)

For thin airfoils (e�0) A0 mod
− − tends to a matrix with interaction coefficients for panels with

double layer density distributions, as if the finite thin airfoil were replaced by a zero thickness
airfoil at the centerplane. Then the multipolar preconditioning can be applied with, say,
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4-panels clusters. The change of basis matrix is the identity for the symmetric modes and the
multipolar matrix Smp for Npan/2 panels given by (40):

S=Smod
�I

0
0

Smp

n
. (43)

The transformed matrix has a structure of the following form

A0 md/mp=S−1AS=
� A0 mod

+ +

Smp
−1A0 mod

− +

A0 mod
+ −Smp

Smp
−1A0 mod

− −Smp

n
. (44)

The Smp change of basis matrix induces a block decomposition (20) on A0 mod
− − and the same

estimation of the order of coefficients as in Equation (34), Section 9, is valid.

Smp
−1A0 mod

− −Smp=
�A00 md/mp

+ +

A00 md/mp
− +

A00 md/mp
+ −

A00 md/mp
− −

n
. (45)

The combined modal and multipolar preconditioning is obtained in this basis by neglecting all
the non-diagonal elements but those in A00 mod

+ + so that the combined preconditioning is

Qmd/mp=Ã
Æ

È

diag(A0 mod
+ +)

0
0

0
A00 md/mp

+ +

0

0
0

diag(A00 md/mp
− − )

Ã
Ç

É
. (46)

The cost of this preconditioning is related to solving a system for A00 mod
+ +, which is a system

Npan/2m, i.e. 2m times smaller than that of the original one. In the limit of a very large cluster
size (2m=Npan) the modal/multipolar preconditioning approaches the pure modal one, since
the preconditioning is diagonal (in a somewhat confuse notation, 2m is referred to as the size
of the cluster so that a ‘modal/multipolar preconditioning with 64 panels/cluster’ stands for a
modal preconditioning combined with a multipolar preconditioning with 32 panels per cluster).
For simplicity, the authors have considered so far that the geometry is composed of a single
thin airfoil. In the general case, some other elements not necessarily thin, as for instance a
fuselage present in the geometry. In that case, the change of basis matrix is block diagonal,
with the identity matrix for those elements not in the thin airfoil part, and the usual modal
change of basis matrix for those which are on the thin airfoil. After this, the change of basis
matrix for the multipolar preconditioning is constructed by clustering those elements in the
thin airfoil, as well as those in the other (non-thin) parts. The extension to several thin airfoils
is also simple.

11. NUMERICAL EXAMPLES

Firstly, several small scales (approximately 200 panels) will be shown. The interest of these
examples is that the full eigenvalue distribution and condition number can be computed using

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 1–27
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standard LAPACK routines (embedded in the high level scientific programming language
Octave). Secondly, convergence curves for examples with large number of panels (\12000)
will be presented. A thin biconvex spherical lens is considered as shown in Figure 11, of
relative thickness t. The expression for the surface of the lens is

[�z �+R/tan(u)]2+x2+y2= (R/sin(u)2, (47)

where the angle u is given by t=2 tan(u/2). Figure 12 presents the behavior of the condition
number as a function of the relative thickness t for the modal/multipolar preconditioned
(Q−1A) and non-preconditioned (A) matrices. Four values of thicknesses, ranging from 25%
to 0.2%, have been considered. It is verified that the condition number for the non-precondi-
tioned matrix is O(1/e) for e�0, whereas it is almost independent of e for the preconditioned
matrix. Moreover, the condition number is nearly the same for all cluster sizes. Remember that
the computational effort involved in the preconditioning is roughly inversely proportional to
the cluster size. However, it will be seen that in practice the rate of convergence does depend
on the cluster size. The mesh was composed of 192 triangular panels. Figure 13 presents the
eigenvalue spectra for the lens for two thicknesses. The mesh was the same as in the previous
paragraph, the modal/multipolar preconditioning has been used. Note that in all cases the
eigenvalues are clearly separated in two branches for the non-preconditioned case, and each

Figure 11. Geometrical description of the lens.

Figure 12. Condition number versus thickness for the lens with several cluster-sizes nc.
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Figure 13. Eigenvalue distribution for the lens with thicknesses 5 and 0.2%.

branch has Npan=/2 eigenvalues. This is typical for problems where a symmetry ‘separates ’
branches of eigenvalues. As the thickness gets smaller, the lower branch, i.e. that one with the
lowest (in absolute value) eigenvalues, gets smaller too, and for very small thicknesses (as
t=0.2% in the figure), the lower branch is clustered near the origin, whereas the upper branch
is clustered near �l �=1. In contrast, the spectra for the preconditioned matrices remains
almost unaltered. Figure 14 presents the convergence history for the 5% thick lens at 0, 5 and
90° angles of attack, and cluster sizes nc ranging from 2 to 64, where the Bi-conjugate gradient
(B-CG) [18,19] algorithm was used. The curve labeled as ‘J’ stands for the non-preconditioned
problem. For incidence at 0°, the flow is symmetric, and then the skew-symmetric part of the
equations is not excited, then the rate of convergence is poorly improved by the precondition-
ing. In the other cases, the improvement in the rate of convergence monotonically decreases
with cluster size. For a typical case of incidence at 5°, it is seen that even with a large cluster
of 64 panels the improvement in the rate of convergence is significant. Similar plots for

Figure 14. Convergence histories of residual for the 5% thick lens at several angles of attack and cluster
size nc, where ‘J’ stands for the non-preconditioned problem.
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thickness of 0.2% are shown in Figure 15. The improvements are more significant for thinner
lenses, as expected. Figures 1–18 show similar results but for a symmetric delta wing, with a
wing section consisting of a symmetric Joukowski profile. Figure 19 represents curves of

Figure 15. Same as Figure 14 for the 0.2% thick lens.

Figure 16. Condition number versus thickness t for several cluster sizes nc.

Figure 17. Convergence histories of residual for the 5% thick symmetric delta wing at several angles of
attack and cluster size nc.
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Figure 18. Same as Figure 17 for the 0.2% thick delta wing.

Figure 19. Convergence curves for symmetric delta wing 8% thick, 12288 panels, cluster size nc=32.

convergence for a delta wing with a typical section being a Joukowski profile, where 12288
panels were used and the airfoil thickness was 8%, see Figure 20. In this case both conjugate
gradient squared (CGS) [20] and Bi-conjugate gradient (B-CG) methods were used without and
with a preconditioning of 32 panels per cluster. It can be seen that the improvement in the rate
of convergence by the preconditioning is significant with both methods and the performance
with CGS is better than with B-CG. In all cases, convergence history versus number of
matrix–vector products (which will be called from here on ‘work units ’) and CPU time are
presented. A work unit involves computation of the interaction coefficients by columns and
standard dot products or DAXPY (the LINPACK vector sum routine) operations. The
expression for the interaction coefficients involve transcendental functions and is by far, the
most time consuming part of the work unit. To estimate the speedup obtained with the
preconditioning we estimated the rates of convergence as the reciprocal of the mean slope of
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the curves with and without preconditioning (as the curves are often noisy, the choice of such
a mean slope is somewhat arbitrary, the dashed lines in the figures represent the mean slope
we adopted). In the case of the residual versus work units curves these rates are expressed in
work units/order that is, the number of work units needed to reduce the residual by a factor
of ten. In the case of the residual versus time, the corresponding unit is CPU hours per order.
Work units rates have the advantage that are independent of processor speed but do not take
into account the overhead needed by the preconditioning. It includes changes to and from the
modal basis and a back-substitution for the preconditioning matrix. For the 12288 mesh with
a 32 panels/cluster preconditioning, the overhead represents a 6.9% of the matrix–vector
product operation but depends strongly on details of the implementation. For instance, on a
vector processor, the overhead tends to be smaller, since the preconditioning operations
(mainly the back-substitution) is much more prone to vectorization than the computation of
coefficients. On the other hand, it is common to evaluate the interaction coefficients for distant
panels using far-field expansions. In this case, the overhead tends to be higher. The speedup is
defined as the quotient between the rates with and without preconditioning, and is a little
higher for the work units rates than those based on CPU time

Figure 20. 12288 panels mesh for the 8% thick delta wing.
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Speedup (work units)
Speedup (CPU time)

=
CPU time for a work unit with prec.
CPU time for a work without prec.

=1+
preconditioning CPU time overhead

CPU time for a work unit without prec.
\1. (48)

Note that solution of the full system matrix would require 1.2 Gbytes of RAM, whereas the
preconditioning matrix only requires 1.2 Mbytes. Indeed, this problem was ran on a DEC
ALPHA/200 workstation of 233 MHz where the core memory requirement was only of 5.2
Mbytes.

12. CONCLUSIONS

The modal/multipolar preconditioning successfully corrects the bad conditioning arising from
thin airfoils. It has been shown that the condition number for the resulting linear system is
O(1/e), whereas for the preconditioned system it is almost constant. Numerical results for a
biconvex lens and a symmetric airfoil are shown, and significants in condition number are
obtained even for airfoils as thick as 25%.
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APPENDIX A

A.1. A0 + + block

Consider for instance, the coefficient A0 11 which from (11a) and (17) is

A0 11=
1
2(A11+A12+A21+A22). (49)

Recall that Aij is the potential produced by a constant distribution of double layer density on
the i-panel on the centroid of the j-panel. If we call f the potential produced by a distribution
of double layer density m=1 on panel 1 and m=1 on panel 2, then

Ai1+Ai2=f(xi). (50)

But, as we discussed previously, for e�0, the double layer densities tend to cancel each other
and we have

f�ef0 , (51)
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where f0 is the potential produced by a constant ‘quadruple layer ’ density. Now,

A0 11=
1
2[f(x1)+f(x2)]�

1
2e [f0 (x1)+f0 (x2)]�

1
2ef0 (x12), (52)

where x12 is the point lying in the middle of the segment joining x1 and x2. This is so for all
the elements in the block, then (21) is obtained.

A.2. A0 − + block

Consider first a non-diagonal coefficient:

A0 41=
1
2(A31+A32−A41−A42)=

1
2[f(x3)−f(x4)]�

1
2e [f0 (x3)−f0 (x4)]�

1
2e

2 (f0
(z

(x34), (53)

where z is a co-ordinate normal to the panels 3 and 4 and we have used the fact that f0 is
well-behaved at x3,4. This reasoning is valid for all the non-diagonal elements in A0 − +, as A0 32.
For the diagonal elements

A0 31=
1
2(A11+A12−A21−A22)=

1
2[f(x1)−f(x2)]=

1
2e [f0 (x1)−f0 (x2)]+O(e2), (54)

but now f0 has some degree of discontinuity across the panel and it can not be expanded in
power series. However, as mentioned above, the ‘quadruple layer density ’ is a symmetric
distribution of density about the centerplane and then f0 (x12+z n̂) is even about z=0, so that

A0 31=
1
2e [f0 (x1)−f0 (x2)]+O(e2)=1

2e [f0 (x12+
1
2e n̂)−f0 (x12−

1
2e n̂)]+O(e2)=O(e2). (55)

As all the elements (diagonal and non-diagonal) are O(e2), then (22) is obtained.

A.3. A0 + − block

Consider the off-diagonal coefficients:

A23=
1
2(A31−A32+A41−A42)=c(x3)+c(x4), (56)

where c is one-half the potential produced by a distribution of double layer density m=1 on
panel 1 and m= −1 on panel 2. In this case, the double layer densities tend to reinforce each
other and

c�c0 for e�0. (57)

In addition, c is well-behaved at x3,4 so that

A23�c0 (x3)+c0 (x4)�2c0 (x34)=O(1), (58)

in contrast, the diagonal terms are of the form
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A13�c0 (x1)+c0 (x2)=O(e), (59)

since c0 is odd across the panel. Then, (23) is obtained.

A.4. A0 − − block

For the off-diagonal terms

A0 34=
1
2(A31−A32−A41+A42)=c(x3)−c(x4)�c0 (x3)−c0 (x4)�e

(c0
(z

(x34)=O(e), (60)

since c0 is well-behaved on x3,4. On the other hand, for the diagonal terms,

A0 33=
1
2(A11−A12−A21+A22)=c(x1)−c(x2)�c0 (x1)−c0 (x2)�2c0 (x1)=O(1), (61)

since c0 is odd across the panel. Then, (24) is obtained.

APPENDIX B. NOMENCLATURE

Kronecker product of two matrices defined by (29)A�B
system matrix of interaction coefficients for double layer densityA
distribution

A0 matrix A in the modal or multipolar basis
C system matrix of interaction coefficients for single layer density

distribution
cond(X) condition of matrix X
d distance between panels

(i) for matrices diag(X) is the diagonal part of X, see Equation (14),diag( )
whereas (ii) diag(a, b, c, . . . ) stands for a matrix whose diagonal entries
are a, b, c, . . .

g potential produced by a single panel on a normal axis passing through its
centroid
length side of the square panelsH
number of panels in a clusterm
normal unit vectorn̂
number of panelsNpan

preconditioning matrixQ
change of basis matrixS

t airfoil thickness
undisturbed velocityu�
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Greek letters

vanishing parameter scaling the airfoil thicknesse

f velocity potential
double layer density on the surfacem

single layer densitys

G airfoil surface
exterior domain to the airfoilV

REFERENCES

1. J. Katz and A. Plotkin, Low-Speed Aerodynamics, from Wing Theory to Panel Methods, McGraw-Hill, New York,
1991.

2. J. D’Elı́a, M. Storti and S. Idelsohn, ‘A CVBEM formulation for multiple profiles and cascades’, Appl. Mech.
Re6., 48, S203–S210 (1995).

3. J. D’Elı́a, M. Storti and S. Idelsohn, ‘A 3D panel code for wave resistance calculations. Part I: General
formulation and discretization’, Re6. Int. Métodos Numér. Cálc. Diseño Ing., 13, 515–530 (1997).

4. M. Storti, J. D’Elı́a and S. Idelsohn, ‘Algebraic discrete non-local (DNL) absorbing boundary condition for the
ship wave resistance problem’, J. Comput. Phys. (1998) to appear.

5. L. Morino and C.C. Kuo, ‘Subsonic potential aerodynamics for complex configurations: a general theory’, AIAA
J., 12, 191–197 (1974).

6. L. Morino (ed.), Computational Methods in Potential Aerodynamics, Springer, Berlin, 1985.
7. M. Gennaretti and L. Morino, ‘A boundary element method for the potential, compressible aerodynamics of

bodies in arbitrary motion’, AIAA J., 96, 15–19 (1992).
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